Polls: All You Wanted To Know, But Were Seldom or Never Told
by John M. Bachar, Jr.

As used herein, a “poll” is the process of soliciting the set of opinions on a subject held by a
“representative” subset of a whole group in order to “closely match” the set of opinions on the
subset held by the whole group.

Upon reflection, one sees that the definition is broadly qualitative but not quantitative. This
prompts numerous questions that must be rigorously and concretely resolved in order to apply
the poll process to real-world situations. What is a ‘whole group”; how is a “representative
subset” selected; what is the origin of the “subject”; how are “opinions on the subject” recorded;
what are the criteria for “closely matched” opinions?

The answers are found in the “Theory of Random Sampling”, a part of the mathematical “Theory
of Probability Spaces.”

In order to clearly understand how a poll process works by applying random sampling theory, it
is helpful to consider a specific example.

Suppose that an election is to take place in California on “Proposition A” and that the population
of registered voters are to make one of two choices: Y (approve) or N (disapprove. After the
election, one will know the percentage, p, that chose Y. Before the election, however, we may
wish to “closely estimate” p (also known as the “margin of error”) with a “high degree of
probability” (also known as the “confidence level™).

More specifically, let us suppose we want the confidence level to be 0.95 and the margin of error
to be 0.02 (i.e., within 2 percent of p). According to random sampling theory, one must have the
complete list of every registered voter from which a “random subset” of size n (meaning every
possible unordered sample of size n has an equal probability of being selected). Finally, the main
result of random sampling gives the EXACT VALUE of n that will result in the chosen
confidence level and the chosen margin of error. In this case, the minimum random sample
size is 2,500.

Included in the Appendix below is a detailed mathematical account of the basic theory of random
sampling, stratified random sampling and the estimation of the size of a population. The table
below contains the minimum random sample size as a function of the confidence level P
(ranging from 0.383 to 0.997) and the margin of error d (0.10% to 5.00%).
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Basic Theory.

Suppose that there is a large finite population of elements (persons, bacteria, whatever) and a subset of the
population (those voting for option A on a ballot, or those bacteria having left-handed helical tails, etc.) whose
fraction, p, we wish to determine. It is generally impractical or impossible to count directly the number of elements
in this subset, and then divide by the number of elements in the whole population, in order to calculate the value of
p- It turns out that by an appropriate choice of a random sample (meaning, every element in the population has an
equal chance of being selected) of sufficient size selected from the whole population, one can estimate p as
accurately as one pleases and with as high a confidence probability as one pleases. We now describe how this can
be done.

We construct a finite probability space as follows. Let M(n, p, m) consist of all ordered sequences of n
repeated independent trials, with probability p for one of exactly two outcomes (call the one "S", and the other, "~S"
-- "not S") on any single trial. The number of elements in M(n, p, m) is 2". The probability of each singleton
subset, {(€1,...s€5-,€0) }, of M(n, p, m) is m({(€1,...,€,,....6,)}) = p*(1 — p)"~* whenever k of the ¢'s are "S" and
the others are "~S". Moreover, the probability of E, i , is given by
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where E,  ;, is the set of all elements which contain k "S's" and n-k "~S's ". Furthermore, M(n, p, m) is partitioned
by the collection {E; gp,....Eqkps---»Ennp}, thatis,
(2) M(n, p, m) = UEn,k,p (disjoint union).

If one has an n repeated independent trials process with probability p of getting S on any single trial, and if
0 < k; < ko < n, then the probability of getting from k; through ky "S's" in n trials is
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By the use of a deep theorem, (3) can be very accurately approximated for n "sufficiently large":

DeMoivre-Laplace Limit Theorem. The probability in (3) obeys the limit
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The integral in (4) is the area under the normal curve, f{t) = \/%e

Next, if n denotes the size of a sample that is to be taken randomly (and one after another with replacement
after each selection) from the whole population, if k denotes the number within the sample found to have property
S, and if p is the actual fraction of the whole finite population having property S, then k/n is the fraction of the
sample having property S. We wish to determine the smallest n such that k/n (the sample preference) is "close to p"
with a "high probability". More precisely, we wish to determine the smallest n such that
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(6) m(|JEnk,p| k satisfies p-d < k/n < p+d) =P,

where P is some desired probability (usually chosen to be near 1). P is called the "confidence probability", and d is
called the "margin of error" (usually small, like .01, .02, .03, etc.).

Now p-d < k/n < p+d is true if and only if np-nd < k < np+nd is true. This gives the range on k, the
number of S's within our sample. Thus, the left hand side of (6) is equal to



(7) m( U En,k,p)

np-nd<k<nptnd

which in turn is equal to (by use of the DeMoivre-Laplace Limit Theorem, with k;=np-nd and ke=np+nd)
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From tables of areas under the normal curve, it is known that \/%7 LXXe‘tQ/ 2dt = 0.6826, 0.9544, or 0.9974,

according as X =1, 2, or 3, respectively. Thus, if we choose our sample size n so that
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9) X = , where X = 1, 2, or 3, respectively,
p(1—p)

then we get the minimal sample size n = p(1-p)(X/d)?, with X = 1, 2, or 3, respectively. But since p(1-p) < 1/4 for
all values of p, we conclude that by choosing n > 1/4(X/d)? (the latter is > p(1-p)(X/d)? !!), we get the desired
confidence level P = 0.6826, 0.9544, or 0.9974, with margin of error d, by choosing n = 1/4(X/d)?, for X = 1, 2, or
3, respectively.

Summary: Choose n = 1/4(X/d)? for X =1, 2, or 3, respectively, and one gets:
m(UEn,k,p| k satisfies pd < k/n < p+d) =0.6826, 0.9544, or 0.9974, respectively.

Various other confidence probabilities can be used by choosing X according to the following table.



Entries in table are the minimum random sample size, n=1/4(X/d) 2, for
margin of error d and confidence probability P

X P d 0.10% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50% 5.00%
0.50000| 0.38292492 62,500 2,500 625 278 156 100 69 51 39 31 25
0.55000| 0.41768063 75,625 3,025 756 336 189 121 84 62 47 37 30
0.60000| 0.45149376 90,000 3,600 900 400 225 144 100 73 56 44 36
0.65000| 0.48430778 105,625 4,225 1,056 469 264 169 117 86 66 52 42
0.70000| 0.51607270 122,500 4,900 1,225 544 306 196 136 100 77 60 49
0.75000| 0.54674530 140,625 5,625 1,406 625 352 225 156 115 88 69 56
0.80000| 0.57628920 160,000 6,400 1,600 711 400 256 178 131 100 79 64
0.85000| 0.60467491 180,625 7,225 1,806 803 452 289 201 147 113 89 72
0.90000| 0.63187975 202,500 8,100 2,025 900 506 324 225 165 127 100 81
0.95000| 0.65788775 225,625 9,025 2,256 1,003 564 361 251 184 141 111 90
1.00000| 0.68268949 250,000 10,000 2,500 1,111 625 400 278 204 156 123 100
1.05000| 0.70628189 275,625 11,025 2,756 1,225 689 441 306 225 172 136 110
1.10000| 0.72866788 302,500 12,100 3,025 1,344 756 484 336 247 189 149 121
1.15000| 0.74985613 330,625 13,225 3,306 1,469 827 529 367 270 207 163 132
1.20000| 0.76986066 360,000 14,400 3,600 1,600 900 576 400 294 225 178 144
1.25000| 0.78870045 390,625 15,625 3,906 1,736 977 625 434 319 244 193 156
1.30000| 0.80639903 422,500( 16,900 4,225 1,878 1,056 676 469 345 264 209 169
1.35000| 0.82298402 455,625 18,225 4,556 2,025 1,139 729 506 372 285 225 182
1.40000| 0.83848668 490,000( 19,600 4,900 2,178 1,225 784 544 400 306 242 196
1.45000| 0.85294148 525,625 21,025 5,256 2,336 1,314 841 584 429 329 260 210
1.50000| 0.86638560 562,500 22,500 5,625 2,500 1,406 900 625 459 352 278 225
1.55000| 0.87885848 600,625| 24,025 6,006 2,669 1,502 961 667 490 375 297 240
1.60000| 0.88474355 640,000 25,600 6,400 2,844 1,600 1,024 711 522 400 316 256
1.65000| 0.89583744 680,625| 27,225 6,806 3,025 1,702 1,089 756 556 425 336 272
1.70000| 0.90606577 722,500 28,900 7,225 3,211 1,806 1,156 803 590 452 357 289
1.75000| 0.91547253 765,625| 30,625 7,656 3,403 1,914 1,225 851 625 479 378 306
1.80000| 0.92410211 810,000 32,400 8,100 3,600 2,025 1,296 900 661 506 400 324
1.85000| 0.93199897 855,625| 34,225 8,556 3,803 2,139 1,369 951 698 535 423 342
1.90000| 0.93920728 902,500 36,100 9,025 4,011 2,256 1,444 1,003 737 564 446 361
1.95000| 0.94577064 950,625| 38,025 9,506 4,225 2,377 1,521 1,056 776 594 469 380
2.00000| 0.95173185 1,000,000{ 40,000{ 10,000 4,444 2,500 1,600 1,111 816 625 494 400
2.05000| 0.95713263 1,050,625 42,025 10,506 4,669 2,627 1,681 1,167 858 657 519 420
2.10000| 0.96201346 1,102,500 44,100( 11,025 4,900 2,756 1,764 1,225 900 689 544 441
2.15000| 0.96641339 1,155,625 46,225 11,556 5,136 2,889 1,849 1,284 943 722 571 462
2.20000| 0.97036988 1,210,000 48,400( 12,100 5,378 3,025 1,936 1,344 988 756 598 484
2.25000| 0.97391876 1,265,625 50,625 12,656 5,625 3,164 2,025 1,406 1,033 791 625 506
2.30000| 0.97709407 1,322,500 52,900 13,225 5,878 3,306 2,116 1,469 1,080 827 653 529
2.35000| 0.97992804 1,380,625 55,225 13,806 6,136 3,452 2,209 1,534 1,127 863 682 552
2.40000| 0.98245105 1,440,000 57,600( 14,400 6,400 3,600 2,304 1,600 1,176 900 711 576
2.45000| 0.98469161 1,500,625 60,025 15,006 6,669 3,752 2,401 1,667 1,225 938 741 600
2.50000| 0.98667638 1,562,500 62,500( 15,625 6,944 3,906 2,500 1,736 1,276 977 772 625
2.55000| 0.98843017 1,625,625 65,025 16,256 7,225 4,064 2,601 1,806 1,327 1,016 803 650
2.60000| 0.98997599 1,690,000 67,600 16,900 7,511 4,225 2,704 1,878 1,380 1,056 835 676
2.65000| 0.99067762 1,755,625 70,225 17,556 7,803 4,389 2,809 1,951 1,433 1,097 867 702
2.70000| 0.99195082 1,822,500 72,900( 18,225 8,100 4,556 2,916 2,025 1,488 1,139 900 729
2.75000| 0.99306605 1,890,625 75,625 18,906 8,403 4,727 3,025 2,101 1,543 1,182 934 756
2.80000| 0.99404047 1,960,000 78,400( 19,600 8,711 4,900 3,136 2,178 1,600 1,225 968 784
2.85000| 0.99488974 2,030,625| 81,225 20,306 9,025 5,077 3,249 2,256 1,658 1,269 1,003 812
2.90000| 0.99562808 2,102,500 84,100 21,025 9,344 5,256 3,364 2,336 1,716 1,314 1,038 841
2.95000| 0.99626837 2,175,625| 87,025 21,756 9,669 5,439 3,481 2,417 1,776 1,360 1,074 870
3.00000| 0.99682226 2,250,000 90,000{ 22,500 10,000 5,625 3,600 2,500 1,837 1,406 1,111 900

Sometimes one wishes to specify in advance the confidence probability P (this is equivalent to specifying
X because P and X are in one-to-one correspondence -- use the above table) and the random sample size n. In this
case, the margin of error d is given by

(10) d = (X/2)(1/y/n).

Stratified Random Sampling

Instead of sampling the whole population as a single entity, it is useful to partition the population and then
to randomly sample each set in the partition independently. We now describe how this can be done.

Let U be a finite population and let (Uy,..., U,) be a partition of U. Let p be the probability that an element
of U has property A, and let p; be the probability that an element of U; has property A, i = 1,..., N. Furthermore, let
Uai C U;j be the set of elements in U; having property A, and Ux C U be the set of elements in U having property
A. Since (Uj,..., U,) is a partition,
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Note that Y w; = 1.
i=1



Let us now consider the case where each Uj is large enough so that the DeMoivre-Laplace Limit Theorem
may be applied to random samples taken from each U;. Thus, let s; C U; be a random sample of size n; so that

10y) pi - & <8 < p + d; (equivalently, nip; - nidi < ki < mp; + nid;).i=1,..,N
where d; is the margin of error.

Multiplying by w; and then summing from i =1 to i = N leads to

N N N N
(103) ZWi pi - Zwidi <Y Ewi <Ywipi + Zwldla or (because of (101))
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p - Zwl P <Skw < p Zwld, , or equivalently,
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Zﬁwi - >widi <p < wai + Zwidi,or equivalently,
i=1 i=1 i=1 i=1

Notice that the last inequality gives a range on p, the population-at-large probability of having property A.
If we choose each d; to be the same, say d, then the fourth inequality becomes
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Consider the collection of finite probability spaces, Mj(n;, pi, m;), i = 1,..., N, and form the product
probability measure space

N N
(105) M(n, m) = [[Mi(n;, p;, m;), wheren = 3 n; .
i=1 i=1

Each element of the product space has the form e = (e,...,&i,...,6, ), where e; € M;(n;, pi, m;), i = 1,..., N, and the
N

product probability measure m, on singleton subsets, is given by m({e}) = [[mi({ei}). (Recall that, from the
i=1

definition of the probability of a singleton subset given above equation (1), m;({e;j}) = pf‘ (1 —p;)™X.) Finally, if E

N
= (Ei,...,.Ei,....Ey), where E; C Mi(nj, pi, my), i = L,..., N, is any subset of M(n, m), then m(E) = [[my(E)).

i=1
Since d; = d for all i, (10,) becomes njp; - nid < kj < njp; + nid for alli. Thus (7) becomes

(10¢) m;( U By 1) for all i.

nipi-nid <ki<nipitnid

By the DeMoivre-Laplace Limit Theorem (for each n; sufficiently large), the latter is equal to (see (8))
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Finally, the probability that (104) holds is given by
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where Xy = —" for all i,
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Concrete Examples of Stratified Sampling
(1) Let U be the set of voters in California who casted ballots in an election about Proposition A. Let N = 58
and let (Uj.,..., U,) be the partition of U into California's 58 counties. Letd = 0.01 and let the confidence probability

be P = 0.9518 for each of the counties. Thus, \ﬁfX*‘ e "12dt = 0.9518, and the probability that (104) holds is



(using (10g) ) (0.9518)%® = 0.057. The sample size in each county must be 10,000. Thus, if each county uses a
random sample of 10,000 (which gives a margin of error of d = 0.01), then the confidence level for the entire state
for (10g) is only 0.057! On the other hand, if d = 0.01 and the confidence probability is P = 0.9974 for each of the
counties, then the probability that (104) holds is (0.9974)°% = 0.860.

N N

2) Setting n = > .n; and k = > k; , and if we let n; = nw; , i = 1,..., N, then the last inequality in (103)
i=1 i=1
becomes

N
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This is the case where the sample sizes are weighted the same as the size of each Uj is weighted to the size of U.

3) 1t is clear that the stratified method of estimating p for the whole state (with n=10,000, d = 0.01 and P =
0.9518 for each of the counties) yields a very small confidence probability, namely 0.057, while the method of
taking a random sample from the whole state (say, 10,000, and with d = 0.01) yields a very high confidence
probability, namely 0.9518!

Estimating the Size of a Population by Random Sampling Instead of Counting Every Element.

There are countless instances wherein one wishes to determine the size of a certain population of interest,
but because of the nature of the population, it is impossible, or at best, extremely difficult, to count directly every
element in the population. For example, in census taking, it is impossible to count every one by employing the
usual method of door-to-door inquiry plus questionnaire mailings. Another example is the problem of determining
the number of fish in a lake, or of determining the number of wolves in a given geographical region. One can think
of a myriad of similar examples.

It turns out that one can determine the size of a population with as much accuracy as desired and with as
high a confidence probability as desired by means of a process that incorporates the method of random sampling
described above. We now describe this process.

We first select a subset (it need not be random) of size n; from the population whose size, N, we wish to
estimate. We then "tag" each element in the subset. The fraction of "tagged" elements in the population is given by
p = ny/N. Since n; is known, it follows that the task of estimating N is equivalent to the task of estimating p
(because N =ny/p). But the latter estimation task simply employs the random sampling method described above.

In order to estimate p from a random sample of size ny taken one after another (with replacement after each
selection) from the population, we simply choose the desired confidence probability, P, together with its associated
value of X (via the DeMoivre-Laplace Limit Theorem), and a margin or error, d. Thus, by the first sentence after
(9), nz = p(1-p)(X/d)°.

With confidence probability P, the estimate, ps, of p that is obtained from the random sample will satisfy
the inequality p-d < ps < p+d. But if we make the substitution d=6p, where ¢ is chosen in advance, then this
inequality becomes

(10) (1-0)p < ps < (1+6)p
and n, becomes
(11) ny = [(1-p)/p](X/6)*.

The estimate, Ns , of N, in view of (10) and the fact that Ny =n,/ps and N =n,/p, satisfies

(12) N/(1+6) < Ny < N/(1-6)
and
(13) -0/(1-60) < (N - Ns)/N < 6/(1+6) < 6/(1-6),

and therefore,

(14) IN-N;/N < §/(1-6) and |N-N| < [6/(1-6)]N.

If we define 5=06/(1-6) (hence 6 = B/(1+(3) ), then the relative error, |N - Ny |/N , satisfies



(15) IN-N,/N < 3
with confidence probability P provided n, is chosen by (see (11) with § = 8/(1+3) )
(16) ny = (1/p - (1 + 1/8)*X>.

In practice, one does not know N in advance, of course, but one usually knows an upper bound for N, say
Nu. Because p = n;/N , this is equivalent to knowing a lower bound, p;, for p. This implies I/p -1 < 1/p; - 1.
Thus, if we choose nj = (1/p; - 1)(1 + 1/3)2X* (which is > n,), then with confidence probability P, the
relative error in estimating N by using a random sample of size n, will satisfy |[N - N |/N < 3.

As an example, suppose we wish to estimate the population size, N, of the USA (assume N is at most 270
million). Let us say we want a confidence probability of 0.9545 (so that X = 2), and that the number n; of "tagged"
individuals is 0.8N (about 216 million in the first survey) so that p = 0.8. If we wish the relative error to be 0.1%
(so 8 =0.001 and |N - Ng| < 270,000), then the random sample size must be n} = 1,002,001; if we wish the
relative error to be 0.05% (so 8 = 0.0005 and |N - Ng| < 135,0000), then n) = 4,004,001. Finally, assume the
number of "tagged" individuals is 0.95N (=256.5 million, so at most 13.5 million are uncounted in the first survey),
hence that p=0.95 and 8 = 0.0001 (i.e., a relative error of 0.01% and with | N - Ng | < 27,000), then n} = 8,882,000.

Note that the total number contacted in the two-stage census survey (= the number, n;, of "tagged"
individuals plus the number, n,, in the random sample) is, respectively, 217 million (maximum uncertainty,
270,000, or 0.1%), 220 million (maximum uncertainty, 135,000, or 0.05%), and 265.4 million (maximum
uncertainty, 27,000, or 0.01%). Thus, by employing this process, the total number of individuals contacted is less
than the population size! Moreover, the estimation of N is more accurate (and, to boot, has a confidence probability
of 0.9545) than the traditional "try-to-count-everyone-in-one-try" method!



