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As used herein, a “poll” is the process of soliciting the set of opinions on a subject held by a 
“representative” subset of a whole group in order to “closely match” the set of opinions on the 
subset held by the whole group.   
 
Upon reflection, one sees that the definition is broadly qualitative but not quantitative. This 
prompts numerous questions that must be rigorously and concretely resolved in order to apply 
the poll process to real-world situations. What is a ‘whole group”; how is a “representative 
subset” selected; what is the origin of the “subject”; how are “opinions on the subject” recorded; 
what are the criteria for “closely matched” opinions?   
 
The answers are found in the “Theory of Random Sampling”, a part of the mathematical “Theory 
of Probability Spaces.”  
 
In order to clearly understand how a poll process works by applying random sampling theory, it 
is helpful to consider a specific example. 
 
Suppose that an election is to take place in California on “Proposition A” and that the population 
of registered voters are to make one of two choices: Y (approve) or N (disapprove. After the 
election, one will know the percentage, p, that chose Y. Before the election, however, we may 
wish to “closely estimate” p (also known as the “margin of error”) with a “high degree of 
probability” (also known as the “confidence level”). 
 
More specifically, let us suppose we want the confidence level to be 0.95 and the margin of error 
to be 0.02 (i.e., within 2 percent of p). According to random sampling theory, one must have the 
complete list of every registered voter from which a “random subset” of size n  (meaning every 
possible unordered sample of size n has an equal probability of being selected). Finally, the main 
result of random sampling gives the EXACT VALUE of n that will result in the chosen 
confidence level and the chosen margin of error. In this case, the minimum random sample 
size is 2,500. 
 
Included in the Appendix below is a detailed mathematical account of the basic theory of random 
sampling, stratified random sampling and the estimation of the size of a population. The table 
below contains the minimum random sample size as a function of the confidence level P 
(ranging from 0.383 to 0.997) and the margin of error d (0.10% to 5.00%). 
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Basic Theory.
 Suppose that there is a large finite population of elements (persons, bacteria, whatever) and a subset of the
population (those voting for option A on a ballot, or those bacteria having left-handed helical tails, etc.) whose
fraction, p, we wish to determine.  It is generally impractical or impossible to count directly the number of elements
in this subset, and then divide by the number of elements in the whole population, in order to calculate the value of
p.  It turns out that by an appropriate choice of a random sample (meaning, every element in the population has an
equal chance of being selected) of sufficient size selected from the whole population, one can estimate p as
accurately as one pleases and with as high a confidence probability as one pleases.  We now describe how this can
be done.
 We construct a finite probability space as follows.  Let M(n, p, m) consist of all ordered sequences of n
repeated independent trials, with probability p for one of exactly two outcomes (call the one "S", and the other, "~S"
-- "not S") on any single trial.  The number of elements in  M(n, p, m) is 2 .  The probability of each singletonn

subset, ,..., ,..., of  M(n, p, m) is m( ,..., ,..., ) =  whenever  k of the 's are "S" andÖÐ Ñ×ß ÖÐ Ñ× : Ð" c :Ñ% % % % % % %1 1i i i8 8
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the others are "~S".  Moreover, the probability of E  is given byn,k,p
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where E  is the set of all elements which contain k "S's" and n-k  "~S's ".  Furthermore,  M(n, p, m) is partitionedn,k,p
by the collection {E ,...,E ,...,E }, that is,n,0,p n,k,p n,n,p

Ð#Ñ I ÐM(n, p, m) = disjoint union)..
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 If one has an n repeated independent trials process with probability p of getting S on any single trial, and if
0 k k n, then the probability of getting from k  through k  "S's" in n trials isŸ Ÿ Ÿ" # " #
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 By the use of a deep theorem, (3) can be very accurately approximated for n "sufficiently large":

DeMoivre-Laplace Limit Theorem.  The probability in (3) obeys the limit
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 Next, if n denotes the size of a sample that is to be taken randomly (and one after another with replacement
after each selection) from the whole population, if k denotes the number within the sample found to have property
S, and if p is the actual fraction of the whole finite population having property S, then k/n is the fraction of the
sample having property S.  We wish to determine the smallest n such that k/n (the sample preference) is "close to p"
with a "high probability".  More precisely, we wish to determine the smallest n such that

Ð Ñ6 E  k satisfies  = P,m( p-d k/n p+d) - ¸n,k,p Ÿ Ÿ

where P is some desired probability (usually chosen to be near 1).  P is called the "confidence probability", and d is
called the "margin of error" (usually small, like .01, .02, .03, etc.).
 Now p-d k/n p+d is true if and only if np-nd k np+nd is true.  This gives the range on k, theŸ Ÿ Ÿ Ÿ
number of S's within our sample.  Thus, the left hand side of (6) is equal to
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which in turn is equal to (by use of the DeMoivre-Laplace Limit Theorem, with k =np-nd and k =np+nd)" #
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From tables of areas under the normal curve, it is known that  = 0.6826, 0.9544, or 0.9974,"
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according as X = 1, 2, or 3, respectively.  Thus, if we choose our sample size n so that
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then we get the minimal sample size n = p(1-p)(X/d) , with X = 1, 2, or 3, respectively.  But since p(1-p) 1/4 for# Ÿ
all values of p, we conclude that by choosing n 1/4(X/d)  (the latter is p(1-p)(X/d)  !!), we get the desired   # #

confidence level P = 0.6826, 0.9544, or 0.9974, with margin of error d, by choosing n 1/4(X/d) , for X = 1, 2, orœ #

3, respectively.

Summary:  Choose n 1/4(X/d)  for X = 1, 2, or 3, respectively, and one gets:œ #

m( pd k/n p+d) - ¸E  k satisfies  = 0.6826, 0.9544, or 0.9974, respectively.n,k,p Ÿ Ÿ  

 Various other confidence probabilities can be used by choosing X according to the following table.



Entries in table are the minimum random sample size, n=1/4(X/d) 2 , for
margin of error d and confidence probability P

5.00%4.50%4.00%3.50%3.00%2.50%2.00%1.50%1.00%0.50%0.10%dPX
25313951691001562786252,50062,5000.382924920.50000
30374762841211893367563,02575,6250.417680630.55000
364456731001442254009003,60090,0000.451493760.60000
425266861171692644691,0564,225105,6250.484307780.65000
4960771001361963065441,2254,900122,5000.516072700.70000
5669881151562253526251,4065,625140,6250.546745300.75000
64791001311782564007111,6006,400160,0000.576289200.80000
72891131472012894528031,8067,225180,6250.604674910.85000
811001271652253245069002,0258,100202,5000.631879750.90000
901111411842513615641,0032,2569,025225,6250.657887750.95000

1001231562042784006251,1112,50010,000250,0000.682689491.00000
1101361722253064416891,2252,75611,025275,6250.706281891.05000
1211491892473364847561,3443,02512,100302,5000.728667881.10000
1321632072703675298271,4693,30613,225330,6250.749856131.15000
1441782252944005769001,6003,60014,400360,0000.769860661.20000
1561932443194346259771,7363,90615,625390,6250.788700451.25000
1692092643454696761,0561,8784,22516,900422,5000.806399031.30000
1822252853725067291,1392,0254,55618,225455,6250.822984021.35000
1962423064005447841,2252,1784,90019,600490,0000.838486681.40000
2102603294295848411,3142,3365,25621,025525,6250.852941481.45000
2252783524596259001,4062,5005,62522,500562,5000.866385601.50000
2402973754906679611,5022,6696,00624,025600,6250.878858481.55000
2563164005227111,0241,6002,8446,40025,600640,0000.884743551.60000
2723364255567561,0891,7023,0256,80627,225680,6250.895837441.65000
2893574525908031,1561,8063,2117,22528,900722,5000.906065771.70000
3063784796258511,2251,9143,4037,65630,625765,6250.915472531.75000
3244005066619001,2962,0253,6008,10032,400810,0000.924102111.80000
3424235356989511,3692,1393,8038,55634,225855,6250.931998971.85000
3614465647371,0031,4442,2564,0119,02536,100902,5000.939207281.90000
3804695947761,0561,5212,3774,2259,50638,025950,6250.945770641.95000
4004946258161,1111,6002,5004,44410,00040,0001,000,0000.951731852.00000
4205196578581,1671,6812,6274,66910,50642,0251,050,6250.957132632.05000
4415446899001,2251,7642,7564,90011,02544,1001,102,5000.962013462.10000
4625717229431,2841,8492,8895,13611,55646,2251,155,6250.966413392.15000
4845987569881,3441,9363,0255,37812,10048,4001,210,0000.970369882.20000
5066257911,0331,4062,0253,1645,62512,65650,6251,265,6250.973918762.25000
5296538271,0801,4692,1163,3065,87813,22552,9001,322,5000.977094072.30000
5526828631,1271,5342,2093,4526,13613,80655,2251,380,6250.979928042.35000
5767119001,1761,6002,3043,6006,40014,40057,6001,440,0000.982451052.40000
6007419381,2251,6672,4013,7526,66915,00660,0251,500,6250.984691612.45000
6257729771,2761,7362,5003,9066,94415,62562,5001,562,5000.986676382.50000
6508031,0161,3271,8062,6014,0647,22516,25665,0251,625,6250.988430172.55000
6768351,0561,3801,8782,7044,2257,51116,90067,6001,690,0000.989975992.60000
7028671,0971,4331,9512,8094,3897,80317,55670,2251,755,6250.990677622.65000
7299001,1391,4882,0252,9164,5568,10018,22572,9001,822,5000.991950822.70000
7569341,1821,5432,1013,0254,7278,40318,90675,6251,890,6250.993066052.75000
7849681,2251,6002,1783,1364,9008,71119,60078,4001,960,0000.994040472.80000
8121,0031,2691,6582,2563,2495,0779,02520,30681,2252,030,6250.994889742.85000
8411,0381,3141,7162,3363,3645,2569,34421,02584,1002,102,5000.995628082.90000
8701,0741,3601,7762,4173,4815,4399,66921,75687,0252,175,6250.996268372.95000
9001,1111,4061,8372,5003,6005,62510,00022,50090,0002,250,0000.996822263.00000

 Sometimes one wishes to specify in advance the confidence probability P (this is equivalent to specifying
X because P and X are in one-to-one correspondence  -- use the above table) and the random sample size n.  In this
case, the margin of error d is given by

(10)     d = (X/2)(1/ ).È8

Stratified Random Sampling
 Instead of sampling the whole population as a single entity, it is useful to partition the population and then
to randomly sample each set in the partition independently.  We now describe how this can be done.
 Let U be a finite population and let (U ,..., U ) be a partition of U.  Let p be the probability that an element1 N

of U has property A, and let p  be the probability that an element of U  has property A, i = 1,..., N.  Furthermore, leti i
U U  be the set of elements in U  having property A, and U U  be the set of elements in U having propertyAi i i A§ §
A.  Since  (U ,..., U ) is a partition,1 N

(10 )  1                 #U  = #U ,  p  = ,  and  p =  =  ) =   p w  ,A Ai i i i
i=1 i=1 i=1 i=1

N N N N
#U #U #U #U #U
#U #U #U #U #U

! ! ! !Ai A Ai Ai i
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                          where w  = , i = 1,..., N.i
#U
#U

i

Note that   w  = 1.!
i=1

N
i



 Let us now consider the case where each U  is large enough so that the DeMoivre-Laplace Limit Theoremi
may be applied to random samples taken from each U .  Thus, let s U  be a random sample of size n  so thati i i i§
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                         where d is the margin of error.i 

Multiplying by w  and then summing from i = 1 to i = N leads toi
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Notice that the last inequality gives a  range on p, the population-at-large probability of having property A.
 If we choose each d  to be the i same, say d, then the fourth inequality becomes

(10 )4                  w    -  d p    w   +  d, or  p -  w   d .! ! !¹ ¹
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 Consider the collection of finite probability spaces, i = 1,..., N, and form the productM (n , p , m ), i i i i
probability measure space

(10 )5                    M(n, m) = M (n , p , m ), where n  = n  .#
i=1

N
i i i i i!

i=1

N

Each element of the product space has the form e = (e ,...,e ,...,e ), where e   M (n , p , m ), 1 i i i i i iN % i = 1,..., N, and the

product probability measure m, on singleton subsets, is given by m({e}) = Recall that, from the#
i=1

N
i im ({e }).  (

definition of the probability of a singleton subset given above equation (1), m ({e }) = pi i i
kiÐ" c Ñpi

n -ki i .)  Finally, if E

=  is any subset of then m(E) =(E ,...,E ,...,E ), where E   M (n , p , m ), M(n, m), m (E ).1 i i i i i i i i
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By the DeMoivre-Laplace Limit Theorem (for each n  sufficiently large), the latter is equal to (see (8))i
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Finally, the probability that (10 ) holds is given by4
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Concrete Examples of Stratified Sampling
(1) Let U be the set of voters in California who casted ballots in an election about Proposition A.  Let N = 58 
and let (U ,..., U ) be the partition of U into California's 58 counties.  Let d = 0.01 and let the confidence probability1 N

be P = 0.9518 for each of the counties.  Thus, "

# \

\ c> Î#È 1
'

c

#

i

+i/ .> = 0.9518, and the probability that (10 ) holds is4



(using (10 ) ) (0.9518)  = 0.057.  The sample size in each county must be 10,000.  Thus, if each county uses a 8
58

random sample of 10,000 (which gives a margin of error of d = 0.01), then the confidence level for the entire state
for (10 ) is  0.057!  On the other hand, if  8 only d = 0.01 and the confidence probability is P = 0.9974 for each of the
counties, then the probability that (10 ) holds is  (0.9974)  = 0.860.4

58

(2) Setting n =   n  and k =  k  , and if we let n  = nw  , i = 1,..., N, then the last inequality in (10 )! !
i=1 i=1

N N
i i i i 3

becomes

(10 )                        .9   p -    X w¹ ¹ ! Èk
n

1
2 n

i=1

N
i i 
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This is the case where the sample sizes are weighted the same as the size of each U  is weighted to the size of U.i
(3) It is clear that the stratified method of estimating p for the whole state (with n=10,000, d = 0.01 and P =
0.9518 for each of the counties) yields a , namely  while the method ofvery small confidence probability 0.057,
taking a random sample from the whole state (say, 10,000, and with d = 0.01) yields a very high confidence
probability, namely 0.9518!
Estimating the Size of a Population by Random Sampling Instead of Counting Every Element.
 There are countless instances wherein one wishes to determine the size of a certain population of interest,
but because of the nature of the population, it is impossible, or at best, extremely difficult, to count directly every
element in the population.  For example, in census taking, it is impossible to count every one by employing the
usual method of door-to-door inquiry plus questionnaire mailings.  Another example is the problem of determining
the number of fish in a lake, or of determining the number of wolves in a given geographical region.  One can think
of a myriad of similar examples.
 It turns out that one can determine the size of a population with as much accuracy as desired and with as
high a confidence probability as desired by means of a process that incorporates the method of random sampling
described above.  We now describe this process.
 We first select a subset (it need not be random) of size n  from the population whose size, N, we wish to"

estimate.  We then "tag" each element in the subset.  The fraction of "tagged" elements in the population is given by
p = n /N.  Since n  is known, it follows that the task of estimating N is equivalent to the task of estimating p" "

(because N = n /p).  But the latter estimation task simply employs the random sampling method described above."

 In order to estimate p from a random sample of size n  taken one after another (with replacement after each#

selection) from the population, we simply choose the desired confidence probability, P, together with its associated
value of X (via the DeMoivre-Laplace Limit Theorem), and a margin or error, d.  Thus, by the first sentence after
(9), n  = p(1-p)(X/d) .#

#

 With confidence probability P, the estimate, p , of p that is obtained from the random sample will satisfys
the inequality p-d  p p+d.  But if we make the substitution d= p, where  is chosen in advance, then thisŸ Ÿs $ $
inequality becomes

Ð"!Ñ Ÿ Ÿ(1- )p  p (1+ )p$ $s

and n  becomes2

Ð""Ñ n  = [(1-p)/p](X/ ) .2
2$

The estimate, Ns , of N, in view of (10) and the fact that N  = n /p   and N = n /p , satisfiess 1 s 1
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and
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and therefore,

Ð"%Ñ Ÿ Ÿ | N - N |/N  /(1- )  and   | N - N |  [ /(1- )]N.s s$ $ $ $

If we define = /(1- )  (hence  = /(1+ ) ), then the relative error, | N - N |/N , satisfies" $ $ $ " " s
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with confidence probability P provided n  is chosen by (see (11) with  = /(1+ ) )2 $ " "

Ð"'Ñ n  = (1/p - 1)(1 + 1/ ) X .2
2 2"

 In practice, one does not know N in advance, of course, but one usually knows an upper bound for N, say
N .  Because p = n /N , this is equivalent to knowing a lower bound, p , for p.  This implies 1/p - 1  1/p  - 1.m 1 1 1Ÿ
Thus, if we choose n  = (1/p  - 1)(1 + 1/ ) X   (which is  n ), then with confidence probability P, thew

2 1 2
2 2"  

relative error in estimating N by using a random sample of size n  will satisfy | N - N |/N .w
2 s Ÿ "

 As an example, suppose we wish to estimate the population size, N, of the USA (assume N is at most 270
million).  Let us say we want a confidence probability of  0.9545 (so that X = 2), and that the number n  of "tagged""

individuals is 0.8N (about 216 million in the first survey) so that p = 0.8.  If we wish the relative error to be 0.1%
(so  = 0.001 and | N - N | 270,000), then the random sample size must be  = 1,002,001; if we wish  the" s Ÿ  nw

2
relative error to be 0.05% (so  = 0.0005 and | N - N | 135,0000), then  = 4,004,001.  Finally, assume the" s Ÿ nw

2
number of "tagged" individuals is 0.95N (=256.5 million, so at most 13.5 million are uncounted in the first survey),
hence that p=0.95 and   = 0.0001 (i.e., a relative error of 0.01% and with | N - N | 27,000), then  = 8,882,000." s Ÿ nw

2
 Note that the total number contacted in the two-stage census survey (= the number, n , of "tagged"1
individuals plus the number, n , in the random sample) is, respectively, 217 million (maximum uncertainty,2
270,000, or 0.1%), 220 million (maximum uncertainty, 135,000, or 0.05%), and 265.4 million (maximum
uncertainty, 27,000, or 0.01%).  Thus, by employing this process, the total number of individuals contacted is less
than the population size!  Moreover, the estimation of N is more accurate (and, to boot, has a confidence probability
of 0.9545) than the traditional "try-to-count-everyone-in-one-try" method!


