THE FARELESS URBAN MASS TRANSPORTATION SYSTEM (FUMTS) AND THE WORLD OIL DEPLETION CRISIS By John Bachar August 2011

1. WORLD OIL RESERVES AND CONSUMPTION

It's no secret that the world is fast running out of petroleum. In particular, there is less than 1.5 trillion barrels of petroleum reserves remaining on Earth. The main professional sources for petroleum reserves, notably the World Oil Journal and the Oil and Gas Journal, put the figure at 1.2 to 1.3 trillion barrels. The world authority on "peak oil" is ASPO (Association for the Study of Peak Oil and Gas) whose many world-renowned expert petroleum geologists (including Colin Campbell, Jean Laherrer) together with the famous geologist King Hubbert (discoverer of Hubbert's curve who correctly predicted US domestic oil reserves peaked in 1970) have long stated that peak oil in all of the petroleum producing regions on Earth occurred around 2006 (give or take a few years}. In the table below, the straightforward mathematical analysis shows that the total Earth supply of petroleum will be exhausted in 25 to 36 years.

In 2006, world consumption of petroleum was 31.029 billion barrels.						
IF	AND	THEN				
the annual rate of increased	the total remaining world-wide	the time that it takes for				
consumption world-wide is:	reserves in billions of barrels is:	complete depletion is:				
1.50%	1,000	26.5 years				
1.50%	1,200	30.7 years				
1.50%	1,500	36.6 years				
1.90%	1,000	25.4 years				
1.90%	1,200	29.3 years				
1.90%	1,500	34.6 years				
2.00%	1,000	25.1 years				
2.00%	1,200	28.9 years				
2.00%	1,500	34.2 years				

Annual average rate of increased petroleum consumption worlwide: ten year period 1996-2006: 1.90%

Cumulative use in t years = $S = P_0\{[(1+k)t - 1]/k\}$ (in billions of barrels)

If S is given in advance, then $t = [ln(1+k(S/P_0))]/[ln(1+k)]$

 P_0 = the initial annual consumption (world-wide) of petroleum (in billions of barrels)

k = the annual rate of increase of world-wide consumption

Furthermore, the global rates of discovery of new oil fields has been on a terminal decline since 1964

Top Proven World Oil Reserves, January 1, 2010

World Pr	oved Reserv	es of Oil	Estimates			
Energy Information Administration						
Table Post	ed: March 3, 2	009				
	Oil & Gas Jou	ırnal Janua	ry 1, 2009			
United Stat	es	21.317				
North Ame	rica	209.91				
Central & S	South America	122.687				
Europe		13.657				
Eurasia		98.886				
Middle Eas	t	745.998				
Africa		117.064				
Asia & Oce	ania	34.006				
World Tota		1.342.21				

Source: EIA, 2009

Source: Association for Peak Oil and Gas

History of Giant Oilfields: Declining Discoveries and Declining Production

SUMMARY OF GIANT OILFIELDS PRODUCTION (Gb/Yr = Billion Barrels per Year)											
		Total		E	RA DIS	COVER	ED				
Giant Fields	No. of	Production	Pre-								
Production Gb/Yr	Fields	Gb/Yr	1950's	1950s	1960s	1970s	1980s	1990s			
0.365 +	4	2.8480	2	1		1					
0.1825 to 0.365-	10	2.1004	2	3	3	1	1				
0.1095 to 0.1825-	12	1.4596	3	1	6	1	1				
0.0730 to 0.1095-	29	2.2962	8	4	6	9	1	1			
0.0365 to 0.0735-	61	2.8124	5 8 13 13 11 11								
TOTAL	116	11.5166	20	17	28	25	14	12			

		Giant Fields Production Gb/Yr							
Giant Fields	Pre-							Production	
Production Gb/Yr	1950's	1950s	1960s	1970s	1980s	1990s	%	Gb/Yr	
0.365 +	2.0292	0.3916	0.0000	0.4272	0.0000	0.0000	24.73%	2.848	
0.1825 to 0.365-	0.5340	0.6052	0.5696	0.2136	0.1780	0.0000	18.24%	2.1004	
0.1095 to 0.1825-	0.3204	0.1068	0.8188	0.1068	0.1068	0.0000	12.67%	1.4596	
0.0730 to 0.1095-	0.6052	0.3204	0.4984	0.7120	0.0712	0.0712	19.94%	2.2962	
0.0365 to 0.0735-	0.1958	0.3916	0.6052	0.6052	0.5340	0.4984	24.42%	2.8124	
TOTAL	3.6846	1.8156	2.4920	2.0648	0.8900	0.5696	100.00%	11.5166	
Percentage of Total	31.99%	15.77%	21.64%	17.93%	7.73%	4.95%		100.00%	

Source: Matthew Simmons, "The World's Giant Oilfields", 2009

Products Made from a Barrel of Crude Oil (Gallons) (2010)

Note: A 42-U.S. gallon barrel of crude oil provides about 45 gallons of petroleum products. *This gain from processing the crude oil is similar to what happens to popcorn, which gets bigger after it's popped.* The gain from processing is more than 6%. One barrel of crude oil, when refined, produces about 19 gallons of finished <u>motor</u> gasoline, and 10 gallons of <u>diesel</u>, as well as other petroleum products. Most petroleum products are used to produce energy.

2. HISTORY OF US CRUDE OIL PRODUCTION, IMPORTS, CONSUMPTION (EIA)

History of US Crude Oil Production, Imports, Consumption

1954 - 2009

			Billions of barr	els, except as ot	herwise noted		
			* TOTAL *:				
			US Crude Oil				
	Total	Total	Production	Percentage of		Percentage of	Consumption
Year	Production	Imports	Imports	from imports	1 Consumption	consumption	* TOTAL *
1954	2.315	0.384	2.699	14.23%	2.831	13.56%	104.89%
1955	2.484	0.456	2.940	15.51%	3.086	14.78%	104.96%
1956	2.617	0.526	3.143	16.73%	3.212	16.38%	102.18%
1957	2.617	0.575	3.192	18.01%	3.215	17.88%	100.73%
1958	2.449	0.621	3.070	20.23%	3.328	18.66%	108.40%
1959	2.575	0.650	3.225	20.16%	3.477	18.69%	107.83%
1960	2.575	0.664	3.239	20.50%	3.586	18.52%	110.71%
1961	2.622	0.700	3.322	21.07%	3.641	19.22%	109.62%
1962	2.676	0.760	3.436	22.12%	3.796	20.02%	110.47%
1963	2.753	0.775	3.528	21.97%	3.921	19.76%	111.16%
1964	2.787	0.827	3.614	22.88%	4.034	20.50%	111.63%
1965	2.849	0.901	3.750	24.03%	4.202	21.44%	112.07%
1966	3.028	0.939	3.967	23.67%	4.411	21.29%	111.19%
1967	3.216	0.926	4.142	22.36%	4.585	20.20%	110.69%
1968	3.329	1.039	4.368	23.79%	4.902	21.20%	112.22%
1969	3.372	1.156	4.528	25.53%	5.160	22.40%	113.96%
1970	3.517	1.248	4.765	26.19%	5.364	23.26%	112.57%
1971	3.454	1.433	4.887	29.32%	5.553	25.81%	113.62%
1972	3.455	1.735	5.190	33.43%	5.990	28.96%	115.41%
1973	3.361	2.283	5.644	40.45%	6.317	36.14%	111.93%
1974	3.203	2.231	5.434	41.06%	6.078	36.70%	111.86%
1975	3.057	2.210	5.267	41.96%	5.958	37.10%	113.11%
1976	2.976	2.676	5.652	47.34%	6.391	41.87%	113.07%
1977	3.009	3.215	6.224	51.65%	6.727	47.79%	108.08%
1978	3.178	3.053	6.231	49.00%	6.879	44.38%	110.40%
1979	3.121	3.086	6.207	49.72%	6.757	45.67%	108.86%
1980	3.146	2.529	5.675	44.56%	6.242	40.51%	109.99%
1981	3.129	2.188	5.317	41.15%	5.861	37.33%	110.24%
1982	3.157	1.866	5.023	37.15%	5.583	33.42%	111.15%
1983	3.171	1.844	5.015	36.77%	5.559	33.17%	110.85%
1984	3.250	1.990	5.240	37.98%	5.756	34.58%	109.85%
1985	3.275	1.850	5.125	36.10%	5.740	32.23%	112.01%
1986	3.168	2.272	5.440	41.76%	5.942	38.23%	109.23%
1987	3.047	2.437	5.484	44.44%	6.083	40.06%	110.91%
1988	2.979	2.709	5.688	47.63%	6.326	42.83%	111.21%
1989	2.779	2.942	5.721	51.43%	6.324	46.52%	110.54%
1990	2.685	2.926	5.611	52.15%	6.201	47.19%	110.52%
1991	2.707	2./84	5.491	50.70%	6.101	45.64%	111.10%
1992	2.625	2.007	5.512	52.38%	6.234	46.31%	113.11%
1004	2.499	3.284	5.045	55./3%	6.291	50.00%	111.45%
1005	2.431	3.225	5.619	57 200/	6.467	50.78%	115.15%
1006	2.094	3.469	5.835	57.59% 50.4F%	6 701	49.03%	10.0%
1007	2.300	3.709	6.064	61 179/	6.700	54.57%	114.04%
1009	2.000	3.908	6.190	63 129/	6 0.796	56.60%	111.00%
1990	2.202	3.961	6.108	64 85%	7 125	55.60%	116 65%
2000	2.11	4.194	6.325	66 31%	7.23	58 16%	114 0.1%
2001	2.118	4.333	6.451	67.17%	7.172	60.42%	111.18%
2002	2.097	4.209	6.306	66.74%	7.218	58.35%	114.38%
2003	2.073	4.477	6.550	68.35%	7.312	61.23%	111.63%
2004	1.983	4.811	6.794	70.81%	7.588	63.41%	111.68%
2005	1.890	5.006	6.896	72.59%	7.593	65.93%	110.10%
2006	1.862	5.003	6.865	72.87%	7.551	66.26%	109.99%
2007	1.848	4.916	6.764	72.67%	7.548	65.13%	111.59%
2008	1.812	4.727	6.539	72.29%	7.136	66.24%	109.14%
2009	1.938	4.280	6.218	68.83%	6.852	62.47%	110.19%
	151.938	136.951	288.889		321.283		
	L	(

1Petroleum products supplied is used as an approximation for consumption

Note: Total consumption is higher than total production due to refinery gains including alcohol and liquid products produced from coal and other sources. OPEC countries include Venezuela, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, Angola, United Arab Emir

ALASKA PIPELINE

In just two years (between March 27, 1975, and May 31, 1977) the 800-mi.-long (1,287 km), 4-ft. diameter (1.2 m) steel pipeline from Prudhoe Bay on Alaska's North Slope, through Fairbanks, to Valdez, the state's northernmost ice-free port, on Prince William Sound, was built. A total of 15.8 billion barrels of crude have been pumped through the pipeline from the North Slope from 1977 to 2008. That is less than one-half of the world annual consumption of 32 billion barrels.

Amounts in barrels							
	Daily	Yearly	Cumulative				
Year	Average	Total	Total				
1977	575,897	112,300,000	112,300,000				
1978	1,087,695	397,008,750	509,308,750				
1979	1,281,580	467,777,848	977,086,598				
1980	1,516,213	554,934,043	1,532,020,641				
1981	1,523,472	556,067,441	2,088,088,082				
1982	1,619,566	591,141,545	2,679,229,267				
1983	1,646,188	600,858,560	3,280,088,187				
1984	1,663,487	608,836,116	3,888,924,303				
1985	1,780,512	649,886,953	4,538,811,256				
1986	1,823,110	665,434,992	5,204,246,248				
1987	1,963,458	716,662,005	5,920,908,253				
1988	2,033,082	744,107,885	6,665,016,108				
1989	1,885,102	688,062,255	7,353,078,363				
1990	1,793,292	654,551,673	8,007,630,036				
1991	1,822,396	665,174,678	8,672,804,714				
1992	1,746,893	639,363,127	9,312,167,841				
1993	1,619,787	591,222,326	9,903,390,167				
1994	1,587,177	579,319,503	10,482,709,670				
1995	1,523,120	555,938,859	11,038,648,529				
1996	1,435,810	525,506,504	11,564,155,033				
1997	1,334,507	487,094,963	12,051,249,996				
1998	1,206,839	440,496,271	12,491,746,267				
1999	1,078,146	393,523,457	12,885,269,724				
2000	999,202	365,707,875	13,250,977,599				
2001	992,000	362,131,000	13,613,108,362				
2002	1,000,916	365,334,233	13,980,609,456				
2003	993,000	362,554,000	14,323,163,156				
2004	935,134	342,249,701	14,685,413,157				
2005	891,104	325,252,788	15,008,657,831				
2006	759,081	277,064,405	15,377,064,405				
2007	740,170	270,161,990	15,555,884,226				
2008	703,551	257,499,836	15,813,384,062				

USA GULF OF MEXICO

The USA Gulf of Mexico (GoM) oil production using the most recent EIA data peaked in June 2002 at the rate of 0.63145 Billion Barrels per year and is forecast to continue declining. The maximum estimate of total reserves left is about 16 billion barrels, less than half the annual world consumption.

SEE 5 BELOW FOR: US ENERGY CONSUMPTION BY TYPE OF ENERGY AND BY SECTOR, GLOBAL ENERGY PRODUCTION BY SOURCE, AND GLOBAL OIL USE.

3. ALGAE TO BIODIESEL

Years of research at many leading universities and private research companies demonstrates that algae could supply enough fuel to meet all of America's transportation needs in the form of biodiesel. The vast body of results shows that the annual biodiesel yield per acre of land (not required to be arable or crop land!) is between 33,000 to 100,000 gallons! Now one gallon of corn-derived ethanol has less than 60% of the energy content that biodiesel has. IT FOLLOWS THAT FROM THIS AND OTHER FACTORS (SEE ELOW), THE NUMBER OF ACRES REQUIRED TO PRODUCE BIODIESEL TO FULFILL ALL OF THE ANNUAL US TRANSPORTATION ENERGY NEEDS IS BETWEEN 1.5 TO 4.6 MILLION ACRES OF LAND, WHICH COMES TO BETWEEN 0.07% TO 0.2% OF ALL THE US LAND AREA, ARABLE OR NOT! By contrast, the number of acres of corn needed to satisfy annual US transportation energy needs with ethanol is 1.8 times the entire acreage of US arable land (=470 million acres)!!! Of course, this is totally absurd, and yet there still exists plans to produce more and more ethanol!

Fuel Type	BTU's per gallon
Ethanol (M-100)	76,100
Gasoline, regular unleaded, (typical)	114,100
Bio Diesel (B-20)	129,500

4. FARELESS URBAN MASS TRANSPORTATION SYSTEM (FUMTS)

The establishment of a mass transit, fare-free, system for urban regions can be financed easily by a method that literally involves no cost to 99% of the citizens. The proposed method for financing a FUMTS for SCR (Southern California Region, consisting of Los Angeles, Ventura, Orange, San Bernardino and Riverside counties) and, indeed, for all large urban regions in California and the USA, is simple and effective. The source of income is to come from a minuscule annual tax on the net wealth of the wealthiest one percent of the appropriate adult population. In California, the wealthiest one percent of the California adult population has over \$2.5 trillion in net wealth. An annual tax of only 0.48% on this amount would yield over \$11.94 billion annually; this is more than enough to finance FUMTS and would easily take care of the annual California passenger miles traveled for all urban regions in the state! For the entire USA, the wealthiest one percent has over \$25 trillion in net wealth! An annual tax of only 0.35% on this amount would yield \$86.6 billion annually; this is more than enough to finance FUMTS which would easily take care of the annually; this is more than enough to finance FUMTS which would easily take care of the annually; this is more than enough to finance FUMTS which would easily take care of the annually; this is more than enough to finance FUMTS which would easily take care of the annually; this is more than enough to finance FUMTS which would easily take care of the annually; this is more than enough to finance FUMTS which would easily take care of the annually; this is more than enough to finance FUMTS which would easily take care of the annual passenger miles traveled for all urban regions in the USA!

Summary of benefits from creating FUMTS for SCR, California and USA:

1). The annual cost of FUMTS is only 8.47% to 9.01% of the annual cost from using the current all-auto mode! For every \$1 spent for FUMTS, the average motorist spends \$11.10 to \$11.86!

2). The annual fuel consumption for FUMTS is only 9.43% to 9.60% of that from using the current all-auto mode! For every one gallon of fuel used for a bus in the FUMTS mode, the average car in the all-auto mode requires 10.42 to 10.60 gallons!

3). For SCR, California and the USA, respectively, the annual fuel savings that accrue from using FUMTS are 5.68 billion, 10.35 billion, and 70.08 billion gallons, respectively; the annual savings in equivalent barrels of crude petroleum are 298 million, 545 million, and 3.69 billion barrels, respectively; the 10 year savings are 2.76 billion, 4.76 billion, and 30.5 billion barrels, respectively! The last figure for the USA far exceeds the wildest, most optimistic estimation of petroleum reserves in the Arctic National Wildlife Refuge!!

4). The annual pollutants issued from using FUMTS are 10.09% to 10.26% of those issued from the current all-auto mode! If natural gas buses are used instead of diesel, then the ratio drops to near zero!

5) High accident occurrences, resulting in death and injury and extensive, expensive property damage and medical costs for tens of thousands will be greatly reduced.

6) Enormous road/street maintenance costs and waste of fossil energy for road construction and maintenance will be greatly reduced.

7) Parking space costs and parking lot congestion and expense for millions will be greatly reduced.

8) Its use eliminates the nuisance and unnecessary bureaucracy of fare transactions.

THIS IS ABSOLUTE: Ever-increasing gridlock is ever-increasing gridlock, enormous petroleum waste is enormous petroleum waste, enfeebling wasted time is enfeebling wasted time, and staggeringly expensive costs are staggeringly expensive costs by any other euphemisms. If we rigorously use our human reason both to discover and acknowledge the facts about our critical world petroleum depletion crisis and our current transportation quagmire, and if we follow the logical implications for effective human action that such knowledge entails, then we can free ourselves of our plight. Failing this, we are doomed by mindless apathy, irrationality, ignorance and the stranglehold of the powerfully entrenched corporate interests to suffer our ever worsening petroleum extinction plight and transportation afflictions.

The tables immediately following show all the details.

		Comparisor	n of Modes of U	rban Transportatio	on:		
		All auto	* versus all fan	e-free bus modes			
		Annual c	ost				
			Ratio:	For every \$1 of	Annual Cost Savings:		
	All auto mode	All fare-free	bus cost to	bus cost, auto	annual auto cost		
Urban region(s)		bus mode	auto cost	cost is:	minus annual bus cos		
SCR	\$ 52,815,967,200	\$ 5,562,309,692	10.53%	\$9.50	\$ 47,253,657,508		
California	\$ 99,833,340,000	\$ 10,531,553,253	10.55%	\$9.48	\$ 89,301,786,747		
USA	\$ 640,696,740,000	\$ 70,936,082,388	11.07 %	\$9.03	\$ 569,760,657,612		
			Annual fuel	concumption (gall	ons)		
			Ratio:	For every gallon	Annual Fuel Savings:	Equivalent savings in	
	All auto mode	All fare-free	bus fuel use to	of bus fuel use,	annual bus use	barrels of crude***	
Urban region(s)		bus mode	auto fuel use	auto fuel use is:	minus auto use		
SCR	5,740,866,000	500,764,044	8.72%	11.464	5,240,101,950	275,794,840	
California	9,983,334,000	946,197,938	9.48%	10.551	9,037,136,06	475,638,740	
USA	64,069,674,000	6,109,602,297	9.54%	10.487	57,960,071,70	3,050,530,09	
"Here, "auto" me	eans "non-commerci.	al vehicle"		•		***1 barrel crude vield:	
						19 gals gasoline	
	Annual	pollution comparis	ion				
Urban region(s)	Annual bus miles	Annual auto miles	Ratio**				
SCR	2,328,052,039	114,817,320,000	10.14%				
California	4,398,874,215	217,029,000,000	10.13%				
USA	28,403,541,07	1,392,819,000,00	10.20%				
**Assumes a bus	pollutes 5 times as	much as an auto per	mile;				
the ratio of the a	annual bus pollution	to the annual auto p	oollution is				
5×#annual bus	miles traveled / #an	nual auto miles trav					
o A manificar bus	nines uaveleu / mail	nuar auto nines trav					

MT = miles travelled; V = vehicle; P = p	assenger; D = dail	y; A = annual				
BUS CARRYING CAR	PACITY AND COST F	FOR SCR URBAN	ROADS EXCLUDI	NG LOCAL (50 PA:	SSENGERS PER E	BUS)
	18 HOL	JR OPERATING P	ERIOD: 5AM TO 11	IPM		
Hourly ca	ipacity (il.e., passer	nger miles per ho	our), C, at v mph (e	each bus), b buse	s per mile:	submit to a
	C = 50 x b x #1	bi-directional roa	ad miles x v			TOTALS
	Int	OFE	OPA	MA	Col	
Total miles	525.915	451.325	3,196.137	5,226.955	4,553.461	13,953.793
Bi-directional road miles	1,051.830	902.650	6,392.274	10,453.910	9,106.922	27,907.586
v (mph)	55	55	40	30	30	
ь	1.75	1.36	0.37	0.23	0.069	
C	5,061,932	3,375,911	4,730,283	3,606,599	942,566	
18 hour (=daily) capacit	91,114,774	60,766,398	85,145,090	64,918,781	16,966,196	318,911,238
Wait time between buses						
in minute	0.62	0.80	4.05	8.70	28.99	
#buses operating for 18 hr	1,841	1,228	2,365	2,404	628	8,466
#buses operating in 6 hou						
segments (three shifts	5,522	3,683	7,095	7,213	1,885	25,399
#bus hours over 18 hour perio	33,133	22,097	42,573	43,279	11,311	152,392
18 hour cost at \$100/	\$ 3,313,264	\$ 2,209,687	\$ 4,257,254	\$ 4,327,919	\$ 1,131,080	\$ 15,239,205
Annual cost	\$ 1,209,341,542	\$ 806,535,828	\$ 1,553,897,887	\$ 1,579,690,340	\$ 412,844,095	\$ 5,562,309,692
1998 URBAN SCR ALL VEHICLE DATA						
DVMT = DPMT (approximately)	90,876,300	60,419,100	83,945,800	62,603,000	16,723,800	314,568,000
AVMT = APMT (approximately)	33,169,849,500	22,052,971,500	30,640,217,000	22,850,095,000	6,104,187,000	114,817,320,000
Annual bus travel						
=365 x v x #buses operating 18 hrs x 1	665,137,848	443,594,705	621,559,155	473,907,102	123,853,229	2,328,052,039
Annual bus fuel concumption (gallons						a too or a start and
=annual bus travel/4.649mpg	143,071,165	95,417,231	133,697,388	101,937,428	26,640,832	500,764,044
92% of all-vehicle URBAN VMT	is from non-commer	rcial vehicles;	Fare-free bus	Average a	innual cost	
\$0.50 per mile is average cos	st for non-commercia	al vehicle;	system costs:	per SCR capita	a (16.84 million):	\$330.30
Annual non-commercial vehi	cle cost = 0.92xAVN	MTx\$0.50		Average daily	cost per capita:	\$0.90
= \$52,815,	967,200			Annual cost as a	percentage of the	
Urban non-commercial vehicle	s average 20 miles	per gallon;		\$2.5 trillion of net	wealth held by the	
Annual urban non-commercial f	uel consumption=0).92xAVMT/20		richest 1% o	of Californians	0.22%
=5,740,866,00	00 gallons					

BUS CARRY	ING	CAPACITY AND (208	T FOR CA URBAN	N F	ROADS EXCLUDIN	G	LOCAL (50 PASS	EN	GERSPER BUS)			
			18	HOUR OPERATIN	IG	PERIOD: SAM TO	211	PM					
н	our	ly capacity (i.e., pa	1101	nger mile : per hou	IF),	, C, at v mph (each	i bu	is), b buses per r	n lle):	_		
		C = 50 I b I	#bl	-directional road r	πII	es I V					Г		TOTALS
		Int		OFE		OPA		MA		Col			
Total centerline miles (1998)		1,069.184		1,397.345		5,843.989		10,235.916		9,973.415			28,519.849
El-directional road miles		2,138.368		2,794.690		11,687.978		20,471.832		19,946.830	Г		57,039.698
v (mph)		55		55		40		30		30	Γ		
b		1.57		0.93		0.34		0.22		0.08			
c		9,232,404		7,147,420		7,947,825		6,755,705		2,393,620	Г		
18 hour capacity (=daily capacity)		166, 183, 269		128,653,554		143,060,851		121,602,682		43,085,153			602,585,509
Wait time between buses													
in minute :		0.69		1.17		4.41		9.09		25.00	Т		
#buses operating for 18 hrs		3,357		2,599		3,974		4,504		1,596	Т		16,030
#buses operating in 6 hour											Г		
segments (three shifts)		10,072		7,797		11,922		13,511		4,787	Г		48,089
#bus hours over 18 hour period		60,430		46,783		71,530		81,068		28,723			288,536
18 hour cost (=daily cost) at \$ 100/hr	\$	6,043,028	\$	4,678,311	\$	7,153,043	\$	8,106,845	\$	2,872,344	1	5	28,853,571
Annual cost	\$	2,205,705,208	\$	1,707,583,537	\$	2,610,860,526	\$	2,958,998,597	\$	1,048,405,385	1		10,531,553,253
1999 URBAN CALIFORNIA ALL VEHICLE DA	TA:			1000 Co. 1000 Co. 100									to the second state in the second
DVMT = DPMT (approximately)		165,575,342		127,517,808		141,920,548		120,057,534		39,528,767	Т		594,600,000
AVMT - APMT (approximately)		60,435,000,000		46,544,000,000		51,801,000,000		43,821,000,000		14,428,000,000	Т		217,029,000,000
Annual bus travel	1		I				1				L		
=365 I V I #buses operating 18 hrs I 18		1,213,137,865		939,170,945		1,044,344,210		887,699,579		314,521,615			4,398,874,215
Annual bus fuel concumption (gallons)													
=annual bu s travel/4.649mpg		260,945,981		202,015,691		224,638,462		190,944,199		67,653,606	Τ		946, 197, 938
92% of all-velicle URBAN VMT is f	tom	Ioi-comme rolai ve	lick	5;	Г	Fare-free bus		Ave rag	e a	malcost			
\$0.50 per mile is average cost for a non-commercial vehicle;				Г	system costs:		per cap	ita ((34 m IIIlon) :	Т		\$309.75	
Annual urban non-commercial vehicle cost = 0.92 xAVMTx\$0.50				Г		1	Average dat	llyc	ostper capita:			\$0.85	
= \$99,833,3	340,	000						Annalcostas	а́р	ercentage of the			
Urban non-commercial vehicles a	ne ra	ge 20 miles per ga	llot;					\$2.5 trillion of ne	etw	eatti kekibytke			
Annual urban non-commercial fuel	con	sumption=0.92 ±A	VM.	T/20				rickest 15	s o	Californians			0.42%
=9,983,334,00	0 ga	llons											

BUS CARRYING CAR	PACITY AND COST F	FOR USA URBAN	ROADS EXCLUDI	NG LOCAL (50 PAS	SENGERS PER B	US)
	18 HOL	JR OPERATING PI	ERIOD: 5AM TO 11	IPM		
Hourly ca	apacity (i .e., passer	nger miles per ho	ur), C, at v mph (e	each bus), b buse	s per mile:	
	$C = 50 \times b \times #1$	bi-directional roa	d miles x v			TOTALS
	Int	OFE	OPA	MA	Col	
Total miles	13,343.000	9,125.000	53,206.000	89,399.000	88,008.000	253,081.000
Bi-directional road miles	26,686.000	18,250.000	106,412.000	178,798.000	176,016.000	506,162.000
v (mph)	55	55	40	30	30	
ь	0.8	0.53	0.29	0.18	0.079	
C	58,709,200	26,599,375	61,718,960	48,275,460	20,857,896	
18 hour (=daily) capacit	1,056,765,600	478,788,750	1,110,941,280	868,958,280	375,442,128	3,890,896,038
Wait time between buses						
in minute	1.36	2.06	5.17	11.11	25.32	
#buses operating for 18 hr	21,349	9,673	30,859	32,184	13,905	107,970
#buses operating in 6 hou						
segments (three shifts	64,046	29,018	92,578	96,551	41,716	323,909
#bus hours over 18 hour perio	384,278	174,105	555,471	579,306	250,295	1,943,454
18 hour cost at \$100/t	\$ 38,427,840	\$ 17,410,500	\$ 55,547,064	\$ 57,930,552	\$ 25,029,475	\$ 194,345,431
Annual cost	\$ 14,026,161,600	\$ 6,354,832,500	\$ 20,274,678,360	\$21,144,651,480	\$ 9,135,758,448	\$ 70,936,082,388
1998 URBAN USA ALL VEHICLE DATA						
DVMT = DPMT (approximately)	1,049,276,712	470,035,616	1,075,947,945	860,098,630	360,583,562	3,815,942,466
AVMT = APMT (approximately)	382,986,000,000	171,563,000,000	392,721,000,000	313,936,000,000	131,613,000,000	1,392,819,000,000
Annual bus travel						
=365 x v x #buses operating 18 hrs x 1	7,714,388,880	3,495,157,875	8,109,871,344	6,343,395,444	2,740,727,534	28,403,541,077
Annual bus fuel concumption (gallons						
=annual bus travel/4.649mpg	1,659,365,214	751,808,534	1,744,433,501	1,364,464,496	589,530,552	6,109,602,297
92% of all-vehicle URBAN VMT	is from non-commer	cial vehicles;	Fare-free bus	Awerage a	innual cost	
\$0.50 per mile is average cos	st for non-commercia	al vehicle;	system costs:	per USA capit	a (285 million):	\$248.90
Annual non-commercial vehi	cle cost = 0.92xAVN	NTx\$0.50		Average daily	cost per capita:	\$0.68
= \$640,696	,740,000			Annual cost as a	percentage of the	
Urban non-commercial vehicle	s average 20 miles	per gallon;		\$25 trillion of net	wealth held by the	
Annual urban non-commercial f	uel consumption=0).92xAVMT/20		richest 1% of th	e US population:	0.28%
=64,069,674,0)00 gallons					

8. APPENDIX

US ENERGY CONSUMPTION BY TYPE OF ENERGY AND BY SECTOR

Supply Sources	Percent of Source	Demand Sectors	Percent of Sector
Petroleum 37.1%	71% Transportation23% Industrial5% Residential and Commercial1% Electric Power	Transportation 27.8%	95% Petroleum2% Natural Gas3% Renewable Energy
Natural Gas 23.8%	3% Transportation34% Industrial34% Residential andCommercial29% Electric Power	Industrial 20.6%	42% Petroleum 40% Natural Gas 9% Coal 10% Renewable Energy
Coal 22.5%	8% Industrial <1% Residential and Commercial 91% Electric Power	Residential and Commercial 10.8%	16% Petroleum 76% Natural Gas 1% Coal 1% Renewable Energy
Renewable Energy 7.3%	11% Transportation28% Industrial10% Residential andCommercial51% Electric Power	Electric Power 40.1%	1% Petroleum17% Natural Gas51% Coal9% Renewable Energy21% Nuclear ElectricPower

Consumption Summary

Nuclear Electric Power 100% Electric Power 8.5% (30%)

Charts are based on 2007 data. Chart source: Page 7 of Oil 101. Data from EIA and IEA.