THE FARELESS URBAN MASS TRANSPORTATION SYSTEM (FUMTS) AND THE WORLD OIL DEPLETION CRISIS
 By John Bachar
 August 2011

1. WORLD OIL RESERVES AND CONSUMPTION

It's no secret that the world is fast running out of petroleum. In particular, there is less than 1.5 trillion barrels of petroleum reserves remaining on Earth. The main professional sources for petroleum reserves, notably the World Oil Journal and the Oil and Gas Journal, put the figure at 1.2 to 1.3 trillion barrels. The world authority on "peak oil" is ASPO (Association for the Study of Peak Oil and Gas) whose many world-renowned expert petroleum geologists (including Colin Campbell, Jean Laherrer) together with the famous geologist King Hubbert (discoverer of Hubbert's curve who correctly predicted US domestic oil reserves peaked in 1970) have long stated that peak oil in all of the petroleum producing regions on Earth occurred around 2006 (give or take a few years \}. In the table below, the straightforward mathematical analysis shows that the total Earth supply of petroleum will be exhausted in 25 to 36 years.

In 2006, world consumption of petroleum was 31.029 billion barrels.		
the annual rate of increased	the total remaining world-wide	the time that it takes for
consumption world-wide is:	reserves in billions of barrels is:	complete depletion is:
1.50\%	1,000	26.5 years
1.50\%	1,200	30.7 years
1.50\%	1,500	36.6 years
1.90\%	1,000	25.4 years
1.90\%	1,200	29.3 years
1.90\%	1,500	34.6 years
2.00\%	1,000	25.1 years
2.00\%	1,200	28.9 years
2.00\%	1,500	34.2 years

Annual average rate of increased petroleum consumption worlwide: ten year period 1996-2006:
 1.90\%

Cumulative use in t years $=\mathrm{S}=\mathrm{P}_{0}\{[(1+\mathrm{k}) \mathrm{t}-1] / \mathrm{k}\}$ (in billions of barrels)
If S is given in advance, then $t=\left[\ln \left(1+k\left(S / P_{0}\right)\right)\right] /[\ln (1+k)]$
$\mathrm{P}_{0}=$ the initial annual consumption (world-wide) of petroleum (in billions of barrels)
$\mathrm{k}=$ the annual rate of increase of world-wide consumption
Furthermore, the global rates of discovery of new oil fields has been on a terminal decline since 1964

Top Proven World Oil Reserves, January 1, 2010

Source: Oil \& Gas Journal, Jan. 1, 2010

World Proved Reserves of Oil Estimates

Energy Information Administration			
Table Posted: March 3, 2009			
	Oil \& Gas Journal January 1, 2009		
United States		21.317	
North America		209.91	
Central \& South America		122.687	
Europe		13.657	
Eurasia		98.886	
Middle East		745.998	
Africa		117.064	
Asia \& Oceania		34.006	
World Total		1,342.21	

Source: EIA, 2009

Source: Association for Peak Oil and Gas

SUMMARY OF GIANT OILFIELDS PRODUCTION (Gb/Yr = Billion Barrels per Year)

		Total	ERA DISCOVERED					
Giant Fields	No. of	Production	Pre-					
Production Gb/Yr	Fields	Gb/Yr	1950's	1950s	1960s	1970s	1980s	1990s
0.365 +	4	2.8480	2	1		1		
0.1825 to 0.365-	10	2.1004	2	3	3	1	1	
0.1095 to 0.1825-	12	1.4596	3	1	6	1	1	
0.0730 to 0.1095-	29	2.2962	8	4	6	9	1	1
0.0365 to 0.0735-	61	2.8124	5	8	13	13	11	11
TOTAL	116	11.5166	20	17	28	25	14	12

	Giant Fields Production Gb/Yr							Total
Giant Fields	Pre-							Production
Production Gb/Yr	1950's	1950s	1960s	1970s	1980s	1990s	\%	Gb/Yr
0.365 +	2.0292	0.3916	0.0000	0.4272	0.0000	0.0000	24.73\%	2.848
0.1825 to 0.365-	0.5340	0.6052	0.5696	0.2136	0.1780	0.0000	18.24\%	2.1004
0.1095 to 0.1825-	0.3204	0.1068	0.8188	0.1068	0.1068	0.0000	12.67\%	1.4596
0.0730 to 0.1095-	0.6052	0.3204	0.4984	0.7120	0.0712	0.0712	19.94\%	2.2962
0.0365 to 0.0735-	0.1958	0.3916	0.6052	0.6052	0.5340	0.4984	24.42\%	2.8124
TOTAL	3.6846	1.8156	2.4920	2.0648	0.8900	0.5696	100.00\%	11.5166
Percentage of Total	31.99\%	15.77\%	21.64\%	17.93\%	7.73\%	4.95\%		100.00\%

Source: Matthew Simmons, 'The World's Giant Oilfields', 2009

Oil discoveries have been declining since 1964

Note: World oil discovery over 10-year periods, byAssociation for the Study of Peak Oil and Gas.

Products Made from a Barrel of Crude Oil (Gallons)
(2010)

Note: A 42-U.S. gallon barrel of crude oil provides about 45 gallons of petroleum products. This gain from processing the crude oil is similar to what happens to popcorn, which gets bigger after it's popped. The gain from processing is more than 6%. One barrel of crude oil, when refined, produces about 19 gallons of finished motor gasoline, and 10 gallons of diesel, as well as other petroleum products. Most petroleum products are used to produce energy. History of US Crude Oil Production, Imports, Consumption 1954-2009

Billions of barrels, except as otherwise noted							
			* TOTAL*:				
			US Crude Oil				
	Total		Production	Percentage of		Percentage of	Consumption
	US Crude Oil	Total	Plus	of total		of imports in	divided by
Year	Production	Imports	Imports	from imports	1Consumption	consumption	* TOTAL *
1954	2.315	0.384	2.699	14.23\%	2.831	13.56\%	104.89\%
1955	2.484	0.456	2.940	15.51\%	3.086	14.78\%	104.96\%
1956	2.617	0.526	3.143	16.73\%	3.212	16.38\%	102.18\%
1957	2.617	0.575	3.192	18.01\%	3.215	17.88\%	100.73\%
1958	2.449	0.621	3.070	20.23\%	3.328	18.66\%	108.40\%
1959	2.575	0.650	3.225	20.16\%	3.477	18.69\%	107.83\%
1960	2.575	0.664	3.239	20.50\%	3.586	18.52\%	110.7\%
1961	2.622	0.700	3.322	21.07\%	3.641	19.22\%	109.62\%
1962	2.676	0.760	3.436	22.12\%	3.796	20.02\%	110.47\%
1963	2.753	0.775	3.528	21.97\%	3.921	19.76\%	111.16\%
1964	2.787	0.827	3.614	22.88\%	4.034	20.50\%	111.63\%
1965	2.849	0.901	3.750	24.03\%	4.202	21.44\%	112.07\%
1966	3.028	0.939	3.967	23.67\%	4.411	21.29\%	111.19\%
1967	3.216	0.926	4.142	22.36\%	4.585	20.20\%	110.69\%
1968	3.329	1.039	4.368	23.79\%	4.902	21.20\%	112.22\%
1969	3.372	1.156	4.528	25.53\%	5.160	22.40\%	113.96\%
1970	3.517	1.248	4.765	26.19\%	5.364	23.26\%	112.57\%
1971	3.454	1.433	4.887	29.32\%	5.553	25.81\%	113.62\%
1972	3.455	1.735	5.190	33.43\%	5.990	28.96\%	115.4\%
1973	3.361	2.283	5.644	40.45\%	6.317	36.14\%	111.93\%
1974	3.203	2.231	5.434	41.06\%	6.078	36.70\%	111.86\%
1975	3.057	2.210	5.267	41.96\%	5.958	37.10\%	113.11\%
1976	2.976	2.676	5.652	47.34\%	6.391	41.87\%	113.07\%
1977	3.009	3.215	6.224	51.65\%	6.727	47.79\%	108.08\%
1978	3.178	3.053	6.231	49.00\%	6.879	44.38\%	110.40\%
1979	3.121	3.086	6.207	49.72\%	6.757	45.67\%	108.86\%
1980	3.146	2.529	5.675	44.56\%	6.242	40.51\%	109.99\%
1981	3.129	2.188	5.317	41.15\%	5.861	37.33\%	110.24\%
1982	3.157	1.866	5.023	37.15\%	5.583	33.42\%	111.15\%
1983	3.171	1.844	5.015	36.77\%	5.559	33.17\%	110.85\%
1984	3.250	1.990	5.240	37.98\%	5.756	34.58\%	109.85\%
1985	3.275	1.850	5.125	36.10\%	5.740	32.23\%	112.01\%
1986	3.168	2.272	5.440	41.76\%	5.942	38.23\%	109.23\%
1987	3.047	2.437	5.484	44.44\%	6.083	40.06\%	110.91\%
1988	2.979	2.709	5.688	47.63\%	6.326	42.83\%	111.21\%
1989	2.779	2.942	5.721	51.43\%	6.324	46.52\%	110.54\%
1990	2.685	2.926	5.611	52.15\%	6.201	47.19\%	110.52\%
1991	2.707	2.784	5.491	50.70\%	6.101	45.64\%	111.10\%
1992	2.625	2.887	5.512	52.38\%	6.234	46.31\%	113.11\%
1993	2.499	3.146	5.645	55.73\%	6.291	50.00\%	111.45\%
1994	2.431	3.284	5.715	57.46\%	6.467	50.78\%	113.15\%
1995	2.394	3.225	5.619	57.39\%	6.469	49.85\%	115.13\%
1996	2.366	3.469	5.835	59.45\%	6.701	51.77\%	14.84\%
1997	2.355	3.709	6.064	61.17\%	6.796	54.57\%	112.08\%
1998	2.282	3.908	6.190	63.13\%	6.905	56.60\%	111.55\%
1999	2.147	3.961	6.108	64.85\%	7.125	55.60\%	116.65\%
2000	2.131	4.194	6.325	66.3\%	7.211	58.16\%	114.01\%
2001	2.118	4.333	6.451	67.17\%	7.172	60.42\%	111.18\%
2002	2.097	4.209	6.306	66.74\%	7.213	58.35\%	14.38\%
2003	2.073	4.477	6.550	68.35\%	7.312	61.23\%	111.63\%
2004	1.983	4.811	6.794	70.81\%	7.588	63.41\%	111.68\%
2005	1.890	5.006	6.896	72.59\%	7.593	65.93\%	110.10\%
2006	1.862	5.003	6.865	72.87\%	7.551	66.26\%	109.99\%
2007	1.848	4.916	6.764	72.67\%	7.548	65.13\%	111.59\%
2008	1.812	4.727	6.539	72.29\%	7.136	66.24\%	109.14\%
2009	1.938	4.280	6.218	68.83\%	6.852	62.47\%	110.19\%
	151.938	136.951	288.889		321.283		
Petrol	roducts supp	used as	proximation	rconsumption			

Note: Total consumption is higher than total production due to refinery gains including alcohol and liquid products produced from coal and other sources. OPEC countries include Venezuela, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, Angola, United Arab Emir

ALASKA PIPELINE

In just two years (between March 27, 1975, and May 31, 1977) the 800-mi.-long (1,287 km), 4-ft. diameter (1.2 m) steel pipeline from Prudhoe Bay on Alaska's North Slope, through Fairbanks, to Valdez, the state's northernmost icefree port, on Prince William Sound, was built. A total of 15.8 billion barrels of crude have been pumped through the pipeline from the North Slope from 1977 to 2008. That is less than one-half of the world annual consumption of 32 billion barrels.

Amounts in barrels			
	Daily	Yearly	Cumulative
Year	Average	Total	Total
1977	575,897	$112,300,000$	$112,300,000$
1978	$1,087,695$	$397,008,750$	$509,308,750$
1979	$1,281,580$	$467,777,848$	$977,086,598$
1980	$1,516,213$	$554,934,043$	$1,532,020,641$
1981	$1,523,472$	$556,067,441$	$2,088,088,082$
1982	$1,619,566$	$591,141,545$	$2,679,229,267$
1983	$1,646,188$	$600,858,560$	$3,280,088,187$
1984	$1,663,487$	$608,836,116$	$3,888,924,303$
1985	$1,780,512$	$649,886,953$	$4,538,811,256$
1986	$1,823,110$	$665,434,992$	$5,204,246,248$
1987	$1,963,458$	$716,662,005$	$5,920,908,253$
1988	$2,033,082$	$744,107,885$	$6,665,016,108$
1989	$1,885,102$	$688,062,255$	$7,353,078,363$
1990	$1,793,292$	$654,551,673$	$8,007,630,036$
1991	$1,822,396$	$665,174,678$	$8,672,804,714$
1992	$1,746,893$	$639,363,127$	$9,312,167,841$
1993	$1,619,787$	$591,222,326$	$9,903,390,167$
1994	$1,587,177$	$579,319,503$	$10,482,709,670$
1995	$1,523,120$	$555,938,859$	$11,038,648,529$
1996	$1,435,810$	$525,506,504$	$11,564,155,033$
1997	$1,334,507$	$487,094,963$	$12,051,249,996$
1998	$1,206,839$	$440,496,271$	$12,491,746,267$
1999	$1,078,146$	$393,523,457$	$12,885,269,724$
2000	999,202	$365,707,875$	$13,250,977,599$
2001	992,000	$362,131,000$	$13,613,108,362$
2002	$1,000,916$	$365,334,233$	$13,980,609,456$
2003	993,000	$362,554,000$	$14,323,163,156$
2004	935,134	$342,249,701$	$14,685,413,157$
2005	891,104	$325,252,788$	$15,008,657,831$
2006	759,081	$277,064,405$	$15,377,064,405$
2007	740,170	$270,161,990$	$15,555,884,226$
2008	703,551	$257,499,836$	$15,813,384,062$

USA GULF OF MEXICO

The USA Gulf of Mexico (GoM) oil production using the most recent EIA data peaked in June 2002 at the rate of 0.63145 Billion Barrels per year and is forecast to continue declining. The maximum estimate of total reserves left is about 16 billion barrels, less than half the annual world consumption.

SEE 5 BELOW FOR: US ENERGY CONSUMPTION BY TYPE OF ENERGY AND BY SECTOR, GLOBAL ENERGY PRODUCTION BY SOURCE, AND GLOBAL OIL USE.

3. ALGAE TO BIODIESEL

Years of research at many leading universities and private research companies demonstrates that algae could supply enough fuel to meet all of America's transportation needs in the form of biodiesel. The vast body of results shows that the annual biodiesel yield per acre of land (not required to be arable or crop land!) is between 33,000 to 100,000 gallons! Now one gallon of corn-derived ethanol has less than 60% of the energy content that biodiesel has. IT FOLLOWS THAT FROM THIS AND OTHER FACTORS (SEE ELOW), THE NUMBER OF ACRES REQUIRED TO PRODUCE BIODIESEL TO FULFILL ALL OF THE ANNUAL US TRANSPORTATION ENERGY NEEDS IS BETWEEN 1.5 TO 4.6 MILLION ACRES OF LAND, WHICH COMES TO BETWEEN 0.07% TO 0.2% OF ALL THE US LAND AREA, ARABLE OR NOT! By contrast, the number of acres of corn needed to satisfy annual US transportation energy needs with ethanol is 1.8 times the entire acreage of US arable land ($=470$ million acres)!!! Of course, this is totally absurd, and yet there still exists plans to produce more and more ethanol!

Fuel Type			BTU's per gallon	
Ethanol (M-100)			76,100	
Gasoline, regular unleaded, (typical)	114,100			
Bio Diesel (B-20)		129,500		

4. FARELESS URBAN MASS TRANSPORTATION SYSTEM (FUMTS)

The establishment of a mass transit, fare-free, system for urban regions can be financed easily by a method that literally involves no cost to 99% of the citizens. The proposed method for financing a FUMTS for SCR (Southern California Region, consisting of Los Angeles, Ventura, Orange, San Bernardino and Riverside counties) and, indeed, for all large urban regions in California and the USA, is simple and effective. The source of income is to come from a minuscule annual tax on the net wealth of the wealthiest one percent of the appropriate adult population. In California, the wealthiest one percent of the California adult population has over $\$ 2.5$ trillion in net wealth. An annual tax of only 0.48% on this amount would yield over $\$ 11.94$ billion annually; this is more than enough to finance FUMTS and would easily take care of the annual California passenger miles traveled for all urban regions in the state! For the entire USA, the wealthiest one percent has over $\$ 25$ trillion in net wealth! An annual tax of only 0.35% on this amount would yield $\$ 86.6$ billion annually; this is more than enough to finance FUMTS which would easily take care of the annual passenger miles traveled for all urban regions in the USA!

Summary of benefits from creating FUMTS for SCR, California and USA:
1). The annual cost of FUMTS is only 8.47% to 9.01% of the annual cost from using the current all-auto mode! For every $\$ 1$ spent for FUMTS, the average motorist spends $\$ 11.10$ to $\$ 11.86$!
2). The annual fuel consumption for FUMTS is only 9.43% to 9.60% of that from using the current all-auto mode! For every one gallon of fuel used for a bus in the FUMTS mode, the average car in the all-auto mode requires 10.42 to 10.60 gallons!
3). For SCR, California and the USA, respectively, the annual fuel savings that accrue from using FUMTS are 5.68 billion, 10.35 billion, and 70.08 billion gallons, respectively; the annual savings in equivalent barrels of crude petroleum are 298 million, 545 million, and 3.69 billion barrels, respectively; the 10 year savings are 2.76 billion, 4.76 billion, and 30.5 billion barrels, respectively! The last figure for the USA far exceeds the wildest, most optimistic estimation of petroleum reserves in the Arctic National Wildlife Refuge!!
4). The annual pollutants issued from using FUMTS are 10.09% to 10.26% of those issued from the current all-auto mode! If natural gas buses are used instead of diesel, then the ratio drops to near zero!
5) High accident occurrences, resulting in death and injury and extensive, expensive property damage and medical costs for tens of thousands will be greatly reduced.
6) Enormous road/street maintenance costs and waste of fossil energy for road construction and maintenance will be greatly reduced.
7) Parking space costs and parking lot congestion and expense for millions will be greatly reduced.
8) Its use eliminates the nuisance and unnecessary bureaucracy of fare transactions.

THIS IS ABSOLUTE: Ever-increasing gridlock is ever-increasing gridlock, enormous petroleum waste is enormous petroleum waste, enfeebling wasted time is enfeebling wasted time, and staggeringly expensive costs are staggeringly expensive costs by any other euphemisms. If we rigorously use our human reason both to discover and acknowledge the facts about our critical world petroleum depletion crisis and our current transportation quagmire, and if we follow the logical implications for effective human action that such knowledge entails, then we can free ourselves of our plight. Failing this, we are doomed by mindless apathy, irrationality, ignorance and the stranglehold of the powerfully entrenched corporate interests to suffer our ever worsening petroleum extinction plight and transportation afflictions.

The tables immediately following show all the details.

$\mathrm{MT}=$ miles travelled; $\mathrm{V}=$ vehicle; $\mathrm{P}=$ passenger; $\mathrm{D}=$ daily; $\mathrm{A}=$ annual
BUS CARRYING CAPACITY AND COST FOR SCR URBAN ROADS EXCLUDING LOCAL (50 PASSENGERS PER BUS)

18 HOUR OPERATING PERIOD: 5AM TO 11PM Hourly capacity (i.e., passenger miles per hour), C, at y mph (each bus), b buses per mile: $\mathrm{c}=50 \times \mathrm{b} \times \# \text { bi-directional road miles } \times v$						
Bi-directional road miles	1,051.830	902.650	6,392.274	10,453.910	9,106.922	27,907.586
v (mph)	55	55	40	30	30	
b	1.75	1.36	0.37	0.23	0.069	
C	5,061,932	3,375,911	4,730,283	3,606,599	942,566	
18 hour (=daily) capacit	91,114.774	60,766.398	85,145,090	64,918,781	16,966,196	318,911,238
(1)						
in minute	0.62	0.80	4.05	8.70	28.99	
Houses operating for 18 hr	1.841	1,228	2,365	2.404	628	8.466
Hbuses operating in 6 hou segments (three shift: thus hours over 18 hour perig 18 hour cost at $\$ 100 \mathrm{H}$ innual cost	$\begin{array}{rr}5,522 & \\ 33,133 & \\ 3,313,264 & \$ \\ 1,209,341,542 & \end{array}$	3,683 22,097 $2,209,687$ $806,535,828$	 	7,213 43,279 $\$$ $4,327,919$ $\$$ $1,579,690,340$	1,885 11,311 $\$$ $1,131,080$ $\$$ $412,844,095$	$\begin{array}{rr} & 25,399 \\ & 152,392 \\ \$ & 15,239,205 \\ \$ & 5,562,309,692 \\ \hline \end{array}$
DMUT = DPMT (approximately)	90,876,300	60,419,100	83,945,800	62,603,000	16,723,800	314,568,000
A ${ }^{\text {M M }}$ = APMT (approximately)	33,169,849,500	22,052,971,500	30,640,217,000	22,850,095,000	6,104,187,000	114,817,320,000
Annual bus travel						
=365 x $4 \times$ Hbuses operating $18 \mathrm{hrs} \times 1$	665,137,848	443,594,705	621,559,155	473,907,102	123,853,229	2,328,052,039
Annual bus fuel conoumption fgallons						
=annual bus travel $/ 4.649 \mathrm{mpg}$	143,071,165	95,417,231	133,697,388	101,937,428	26,640,832	500,764,044
92% of all-wehicle URBAN W0T is from non-commercial vehicles; $\$ 0.50$ per mile is average cost for non-commercial vehicle: Annual non-commercial vehicle cost $=0.92 \times \mathrm{MV} / \mathrm{MTx} \$ 0.50$$=\$ 52,815,967,200$			Fare-free bus system costs:	Aorerage annual cost per SCR capita (16.84 million): Aorerage daily cost per capita:		\$330.30
						\$0.90
				Annual cost as a percentage of the $\$ 2.5$ trillion of net wealth held by the		
Uban non-commercial wehicles average 20 miles per gallon;						
$\begin{aligned} \text { Annual urban non-commercial fuel consumption } & =0.92 \times \mathrm{MV} / \mathrm{MT} / 20 \\ & =5,740,866,000 \text { gallons }\end{aligned}$				richest 1\% of Califomians		0.22\%

8. APPENDIX

US ENERGY CONSUMPTION BY TYPE OF ENERGY AND BY SECTOR

Consumption Summary			
Supply Sources	Percent of Source	Demand Sectors	Percent of Sector
Petroleum 37.1%	71% Transportation 23\% Industrial 5\% Residential and Commercial 1\% Electric Power	Transportation 27.8\%	95\% Petroleum 2\% Natural Gas 3\% Renewable Energy
$\begin{gathered} \text { Natural Gas } \\ 23.8 \% \end{gathered}$	3\% Transportation 34% Industrial 34% Residential and Commercial 29\% Electric Power	Industrial 20.6%	42\% Petroleum 40\% Natural Gas 9\% Coal 10\% Renewable Energy
$\begin{gathered} \text { Coal } \\ 22.5 \% \end{gathered}$	8\% Industrial $<1 \%$ Residential and Commercial 91\% Electric Power	Residential and Commercial 10.8%	16\% Petroleum 76% Natural Gas 1\% Coal 1\% Renewable Energy
Renewable Energy 7.3\%	11% Transportation 28\% Industrial 10% Residential and Commercial 51\% Electric Power	Electric Power 40.1%	1\% Petroleum 17% Natural Gas 51\% Coal 9\% Renewable Energy 21\% Nuclear Electric Power

Nuclear Electric
Power
100\% Electric Power

Global energy production by source

Global oil use

